Lipid Bilayer Domain Fluctuations as a Probe of Membrane Viscogy
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We argue that membrane viscosify,, plays a prominent role in the thermal fluctuation dynamics of micron-
scale lipid domains. A theoretical expression is presented for the timestalemain shape relaxation, which
reduces to the well known,, = 0 result of Stone and McConnell in the limit of large domain sizes. Experimen
tal measurements of domain dynamics on the surface of ternary lpdlgsgd and cholesterol vesicles confirm
the theoretical results and suggest domain flicker spectroscopy asen@nt means to simultaneously mea-
sure both the line tensiom, andn,, governing the behavior of individual lipid domainsCorrespondence:
camley@physics.ucsb.edu or florown@chem.ucsb.edu

As a first step to understanding the biophysics of plasma memeals [1], model membrane systems have been developed
to mimic aspects of biomembranes under controlled, sineplifaboratory conditions [2]. Much work has focused on Jesic
composed of ternary phospholipid/cholesterol mixturelseng physical properties of lipid domains can be charasdrby
fluorescence microscopy [3—6].

Among the most biologically important physical properiaégnhomogeneous membrane systems are the line tensioe®@etw
coexisting phases and the membrane viscosity,. Line tensions influence the distribution of domain sizdsdiid viscosities
set diffusion coefficients for lipid domains [8] and memleagroteins [9]. Measurements of line tension via microscaggy
well known, particularly for lipid monolayers [10-12]; rexat “domain flicker spectroscopy”’[6] experiments were digved to
measure the line tension on the surface of ternary vesitles membrane viscosity is not as simple to measure, thoughyit
be estimated by fitting diffusion coefficients to the Saffrielbrick form [8, 13] or by microrheology [14].

In this letter we show that flicker spectroscopy may be usechéasure not only, but alson,,. Our theoretical work
exploits hydrodynamic analysis introduced by Stone and dut@ll (SM) [15], but extends their results to a physicalmeg
where membrane viscosity is relevant. Our experiments gshatvdomain relaxation times do deviate from thg = 0 SM
predictions. By combining theory with experiment, it bea@mpossible to directly measuyg, .

Our analysis of domain fluctuations assumes an isolated idooi@onstant area within a large flat membrane (Fig. 1). We
assume that the boundary energy is givenfby= oL, with o the line tension and, the domain perimeter. It is convenient,
theoretically [15] and experimentally [6, 11], to express lomain shape in Fourier mode&, t) = R(1+ 5 D n0 un (t)e™?),
with » from —N/2 to N/2. To second order in,, (¢), the energy cost of deviations from the minimum energy eiveith radius
Ris [6]
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The equipartition theorem (as applied to the Fourier coreptsof a real-valued physical quantity [16]) immediate&lgds to
the spectrum of equilibrium shape fluctuations [11],
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and a direct experimental route to the determination ofa measurement dfu.,|?) [6].

The time-dependence associated with fluctuations,ift) may be calculated within the hydrodynamic model introduogd
Saffman and Dellirck (SD) [9], namely a single thin flat fluid sheet with surfaggcosityr,, surrounded by a bulk fluid of
viscosityn; treated within the creeping-flow approximation (Fig. 1)][1This picture neglects the dual leaflet structure of the
bilayer and applies only to symmetric bilayers with domadhret are in registry across both leaflets. The availableraxpatal
[19], theoretical [20] and simulation [21] evidence sudgd¢kat domain registry is nearly perfect in ternary modeimibeane
systems, with inter-leaflet domain mismatch confined tosaoéaens of lipids for an entire domain [20, 21]. The SD pietig
expected to be completely adequate to describe domain dgsawer the optical length-scales observed experimgntall

Relaxation of a general domain shape is driven by the linsid@nr, with the radially directed force per unit length at the
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FIG. 1: The shape of a quasi-circular lipid domain within a thin, flat memdbia specified by the distance from the domain center of mass
to the boundary as a function of the polar angleBoth lipid phases are assumed to share the surface visepsifg7]; the membrane is
surrounded by a bulk fluid of viscosity; .
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FIG. 2. Relaxation times ( Eq. 5 )as a function of mode number for abveembrane viscosities assuming a domain With= 2.5.m,
o = 0.1 pN, andn; = 0.01 Poise (water). As membrane viscosity is increased, the relaxamties increase, and the scaling witlchanges
fromr, ~n~2for R/n >> Ly (EQ. 7) tor, ~n~ ' for R/n << L4 (EQ. 8).

domain boundary given by the functional derivatiygd, t) = —R~'5(AE(t))/ér(0,t) [22], which is, to linear order im,, (t),
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This force drives flow within the bilayer and in the bulk fluid. particular, the radial velocity at the domain bounday, t) =
%r(e, t) = g >4, (t)e™ may be obtained through application of the techniques afi&semd McConnell [15], or by use of
the more general formalism developed by Lubensky and Gaitdf22]. The result is conveniently cast in terms of the keur
modes [18]

oult) = Ritn(t) = "L 1, (M) (1) @

m

where the integral,,(A) = [ dxJ2(x)/ [2*(z + A)], Ju(z) is a Bessel function of the first kind antl = 2R /n,,.
Combining Eqgs. 3 and 4 leadsig (t) = —u,(t) /7, with the solutionu,, () = u, (0)e~*/™ where
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The fluctuation-dissipation theorem [23] provides the @antion between the relaxationf (¢) and the equilibrium correlation
functions measured in flicker spectroscopy,

(un (t)u—n(0)) = <‘“n‘2>€7t/m- (6)

Eq. 5 is the primary theoretical result of this letter; th@mssion is evaluated for a few representative parametdfgi 2.
Though there is no general closed-form solution for thegrakin Eq. 5, it reduces to two simple results in appropriibéts.
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FIG. 3: DiPhyPC / Cholesterol / DPPC relaxation times for a single domate tvithR = 3.8um. Error bars are 95% confidence intervals for

the fit to Eq. 6. The fit membrane surface viscosjtyis 3.25 x 107% s.p. Also plotted is the SM theory for the relaxation times (Eq. 7). The

theoretical results assurae= 0.19 pN, as extracted from the varianceun (Eg. 2); dotted lines represent uncertainty in the SM predictions

from adjustings by one standard deviation. Uncertaintysircan not account for the deviation between SM and experiment.

For large domains and sufficiently smal{A >> n), dissipation in the bulk fluid dominates the dynamigs,may be neglected,
and Eqg. 5 approaches a result generally attributed to Stah&aConnell (SM) [15, 24]
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In the opposite limit { << n), the membrane viscosity dominates apjdmay be neglected, recovering the result of Mann et
al. [24]
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As both Eq. 7 and Eq. 8 neglect a source of dissipatignz r,membrane fluid The crossover between regimes occurs where the
wavelength of the fluctuations{ R /n) becomes comparable to the Saffman—Diathrlength scald..; = 7,,/2n;. Membrane
viscosities generally fall withii0.1 — 10) x 10~ surface poise (poise-cm, or grams/s) [8, 13, 25], leadirgpftman-Delbiick
lengthsLs; ~ 0.1 — 10 microns. Recent experimental measurements [6] on domaithsradii of a few microns are thus
expected to deviate from the SM result (see Fig. 2), unlilkerttuch larger domains originally studied by McConnell and
co-workers [10, 15].

To test the above analysis, giant unilamellar vesicles efaary mixture of phospholipids [dipalmitoylphosphatiholine
(DPPC) and diphytanoylphosphatidylcholine (DiPhyPC)li aholesterol were studied experimentally using the flickszc-
troscopy technique (see [6] for details). 28,t) traces from individual domains were analyzed, each fromsiciewith
25:55:20 molar ratios of DiPhyPC / Chol. / DPPC2at+ 1°C [18]. (DiPhyPC was chosen over dioleoylphosphatidylicteol
(DOPC) used in [6] for its greater photostability [26].) Daimimages were thresholded to fin@, t), which was Fourier trans-
formed to yieldw,, (¢). Line tensions{) were extracted from the variance in Fourier modgsia Eq. 2 (with mearr = 0.23
pN over all 28 traces) and relaxation timeg)were determined by fittindu,, (t)u_,,(0)) to single exponential decay. With
R andn; known, Eq. 5 has a single unknown parametgf: The relaxation times over all measuredalues were simultane-
ously fit to our general result (Eq. 5) using, as the fit parameter. A typical fit is shown in Fig. 3. Applyifgstprocedure
to all traces determined the mean membrane surface vigegsit= (4 = 1) x 10~° s.p., consistent with the low-temperature
values observed from fitting diffusion constants. For corigoa, Petrov and Schwille [13] use the data of Cicuta et&lapd
find viscosities of~ 2 x 1076 s.p. at a similar temperature, though for different lipidssimilar analysis based on the SM
expression for the,, (Eq. 7) was also attempted [18]. As SM neglegis there are no free parametersrift'® and relaxation
times are predicted immediately frasm The SM theory predicts relaxation times in clear disage@mith the measurements
(Fig. 3); additional dissipation from the bilayer itself stlbe considered to explain the data. We note that prior sstdeits
of the SM theory to experimental results using DOPC / Chetest DPPC lipid mixtures [6] were only apparent. Eq. 2 of the
present work corrects Eq. 3 of [6]. Also, the extractionrpffrom correlations inu,, (¢) (via Eq. 6) corrects the procedure of
[6], which was based upon correlations|in, (t)|?>. Experimental relaxation times that appeared consistéhtSM in [6] are
actually four times longer than SM predictions when the ysialis carried out properly. This level of disagreementeen
SM and experiment is similar to results summarized in Fig. 3.

We have proposed a simple extension to the usual Stone-M®lldheory for relaxation times of domain fluctuations, &g.
and have verified it against experimental data. The expeitaheesults suggest that membrane viscosity significaaftlcts
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these relaxation times for the smallest wavelength modssrgable by microscopy. By combining equilibrium measiests
of line tension (via. Eq. 2) with the measurement of dynaraiexation, the viscosity of a lipid bilayer may be deterndine
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Supplementary material for “Lipid Bilayer Domain Fluctuatio ns as a Probe of Membrane
Viscosity”

Supplement A. DETAILS ON THE DERIVATION OF THE SHAPE RELAXATI ON TIMES

Our calculation of the relaxation times is based on the wéldoth Stone and McConnell [1] and Lubensky and Goldstein [2]
indeed, our results follow immediately from the hydrodymaamalysis presented in these works with only slight modifans.
The mathematical details are summarized here, elaboraping the treatment in Appendix C of [2]. Within the Saffman-
Delbriick picture of a fluid membrane sheet [3], it is possible tadfmtethe in-plane velocity of all points on the membrane
surface for an arbitrary distribution of in-plane forcesirsg on the membrane [2, 3]. Given a force den$iy) (per unit area),
the membrane velocity is calculated from the membrane Gréamction tensofl;;(r) for velocity response to an applied point
force,

/ dr' Ty (r — v') Ej(r'). (A1)

Here, and in all that follows, the indicesand j refer to in-plane cartesian directions ér y), with summation implied in
expressions with repeated indices. Although there is nlsirolosed-form expression fdr;;, it may be expressed as the
integral [2]

o) = g [ gt (e« 50 "2) ]
- 2;nlmfo q2<q+d§/Lsd> = (9= 7327) dolana® + (65— 2757 ) alan) ] (A2)

whereLsq = nm/(20¢), nm is the membrane surface viscosity;, is the bulk fluid viscosity, and,, are Bessel functions of
the first kind (the primes indicate differentiation). We drapize that this result differs slightly from the form used2]. The
bilayer geometry considered in this work requiges to appear in the denominator 6f, whereas the monolayer geometry at
the air-water interface considered in [2] plaggs(without the factor oR) in this constant. The bilayer is subject to dissipation
from the bulk fluid both above and below the bilayer, whichaats for the factor o [4, 5].

Our result for domain fluctuation dynamics is calculatedhi@ limit of linear response, considering only small flucios
of domain shape away from the minimum energy configuratioa perfect circle of radiug?. These small fluctuations in
domain shape give rise to restoring forces, which are exgliaritten in Eq. 3 of the main paper. The important poinbab
this expression, is that the force vanishes for the undefdraircle - only linear (and, in principle, higher order) trdutions
are present. In order for the velocity of Eq. Al to be lineal§pendent on the shape deformations, the Green’s functigh m
be evaluated for the undeformed domain geometry of the gecficle. Any deviations from the zeroth order geometryfjn
would necessarily lead to second (and higher) order carioibs in the velocity when multiplied against the forces &ve thus
led to a less general form of expression Al, which considers/elocity of the domain boundary at poitiis, #) as driven by
restoring forces at point{s?, #’) in polar coordinates.

[e%s} 27 2
vi(R,0) = / dr'y’ d0' Tij(RE(0) —x')o(r' — R) f(0')7(0") = R do’ Ti; (Re(0) — R (6")) f,(0")75(0"). (A3)
0 0 0
The unit vectors(8) = (75(0), 7, (0)) = (cosd,sin ) andi’(§") = (7,(8"),7,(0")) = (cos#’,sin @) point along the outward
radial direction for the indicated polar angles. The rddidirected velocity is then given by, (0) = ©(0) - v(R, 0) so that

vr(6) R/O Wd@’fi(@(Tij (RE(0) — RE'(0)) £7.(0')75(6")

” d0' RTss (Ri(0) — R () f(0") (A4)
0

The velocities and forces are defined explicitly in the maipey. If the radial velocity is measured at anglen the circle, as
driven by a radially directed force at angle the cartesian vector separating these two points-is’ = R(cos 6 —cos6’, sin§ —
sin ') with a separation oR = |r — r'| = 2Rsin(5% 9%). Itis clear by symmetry that the Green’s function for rakymlirected
forces and velocitie$;: (Ri () — Ri'(¢')) can only depend on the anglgandd’ via their difference — 6’; a rotation of both



points around the origin will not affect value of the radyallirected Green'’s function on the circle. Carrying out ta&alation
explicitly, starting from Eq. A2 leads to

. . S dq 0—0 J1(qR)q
Tf-f-/ 0 —9/ = Tf-f/ 0) — ! 9’ = - 2 2
( ) (Rr(0) — R (0")) S /0 PRSI [ cos ( 5 ) Jo(¢R)q” + R
o /oo dq oo (9_9/>J {2 Pin (9_0/>:| 2+J1 {2qRSin(9—29 )}q
= m Jo @@+ /L) 2 )0 2 )] 2Rsin (552)
-1 /oo dx 2(9_9/>J |:2 ' (9_9/>:| 2+J1 {2$Sin(9720 )}x
= — COS I S1n X 7 .
2m0m Jo  2?(x + R/Lga) 2 0 2 2sin (45%)
-1 o dx 0? 0—0¢
= 2 i . A
e e Voo 2o ()] #9)
This expression may be substituted into Eq. A4 to yield
27
w0) = [0 RTw(0 -0 (0) (A6)
0
which has the form of a simple convolution in the polar angtaiad the domain perimeter, so that
Vo (t) = 7T fn(t) (A7)
R 27 ) R 27
T, = — / dfe T4 () = —/ df cos(nb) T () (A8)
T Jo ™ Jo

and the final equality originates from the fact tf#at (9) is even around the poirft = =, which is clear from symmetry
considerations as well as the explicit mathematical exgiwas. The integral ovet is taken using the last line of Eq. A5 and
applying integration by parts twice to move the derivatioffsthe Bessel function and on tas(nf). The boundary terms

vanish.
n?R & dx 2 A
T, = DET— /0 2@+ R/ /0 df cos(nb)Jy [Qx sin (2)]

2 [e'e) x
- nR/o 22 5 )/o d¢ cos(2n¢) Jo [2z sin ¢]

20 x4+ R/Lgqy
_ n’R /°° dzJ,(z)? (A9)
 mm Jo 22(x+ R/Lgg)

The final integral ovef may be found in standard tables [6]. Eq. A9 and Eq. A7 lead idiately to Eq. 5 of the main paper.

Supplement B. THE MEANING OF 7,, WHEN DOMAIN AND SURROUNDINGS DO NOT SHARE THE SAME VISCOSITY

For future reference, we restate Eq. 5 from the main paper

o0 2 -1
o Nm R 1 / dx Ji(x) _ R 1 . (B1)
o n?2(n?-1) | Jo x2(x + R/Lsp) o I,(2Rng/nm)n?(n? — 1)

This expression and its derivation above are restricteldgaase that both the domain and its surroundings have édéstirface
viscosity,n,,. Though we are not able to present a fully general theorytfercase where domain viscosity differs from the
surrounding viscosity)s, we can argue that that the measured quantifyfobtained via fitting data to Eq. B1) is approximately
equal to the mean viscosity); + 75)/2, when the experimental data is observed to fit the form of Hg. Be can also place
bounds on the accuracy of this approximation.

In the limiting case where dynamics are governed solely bybithavior within the membrane, it is known that Eq. 8 of the
main paper may be generalized to the case of distipeind; [7]

- membrane_ 2(na +ns) R (B2)
no
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In this limit, the correspondence mentioned above is eXdetasuring mode relaxation times and fitting to paper Eq. &lgie
nm = (Na + ns)/2 = 7. More generally, for any finite mode numberthe experimental relaxation times will always be longer

than~, MeMbPrang; eq. B2 owing to the additional dissipation afforded by saerounding bulk solvent. Since we assume that
the available experimental data is well fit by eq. B1 this nsehiat
m B 1 2(na +ns)R

o I,(2Rns/nm)n?(n? —1) ~ no (83)

wherer,,, must now be interpreted as a fitting parameter or effectigeosity that incorporates the influence of bgghands,.
The influence of solvent decreases with increasirand hence approaches equality most closely for the largedé mumber
measured in a given experimeny, ... This inequality may be rearranged and considering anly,. yields the tightest bound
on 7 possible from the experimental measurements

N < anm

Nmax
a = : (B4)
4I’ﬂ(2Rnf/nm)n$nax (n?naz - 1)

The dimensionless quantity > 1 provides a measure for how closely madg,,. approaches the idealized “membrane only”
limit. Values of«a close to one are nearly in the limiting regime whereas lavgduwies correspond to systems more strongly
influenced by the bulk solvent. The domains analyzed in tloikwpan the range ef = 1.1 — 2.1.

We also note that the measured relaxation time for moddl always be shorter than that for a hypothetical membnaiike
homogeneous viscosity;,, = max{ns,n4}, because such a membrane is subject to additional dissipater the region of
the membrane that has been replaced by higher viscositya @en value ofj, the largest value thag,,,, can possibly assume
is 277, which would correspond to the membrane having one regitimfedomain or surroundings) with vanishing viscosity. If
we assume Eq. B1 provides a good fit to the data (witithe measured fit constant) then the preceding argumentasibiat
Tn(Mm) < 7,(27), by which we mean

Nm R 1 2nR 1
< B5
o L.@Rny fna )P 1) o L(RugaA® 1) (%)
Sincer, (n) increases monotonically with, this expression implies
Nm < 21] (B6)

Combing Eq. B4 and Eq. B6 leads to bounds on the value of the foieyer viscosity; in terms of the measured effective
viscosityn,,

Mm

5 <N < QN (B7)
This expression quantifies the meaning of our prior assettiaty,, ~ 7. As noted above, the experimental data considered in
this work involves domains with values on the order of two or smaller andge < 7 < 21, provides a conservative estimate
of the uncertainty in our measurementpfTo within a factor of twoy),,, = 7.

We stress that Eq. B7 does not preclude the possibilitysthat= 7, sincea > 1 for measurement of any finite. The
equality does hold in the limit of large and it is possible that this equality extends ovemallndeed, if perfect experimental
data extending over ail values were found to fit Eq. B1, it would necessarily be thedhatn,, = 7 since the equality must
hold at highn, thus setting the value for the entire set of modes. The diegeanalysis accounts for the possibility that the
agreement between Eq. B1 and experiment may only be apfappriximate due to uncertainty in the data. Without data
extending down to the: = 1 limit, it is not possible to surmise that the functional foohB1 with a constanty,,, value holds
over alln values.

Supplement C. DETAILS OF THE COMPARISON BETWEEN THEORY AND EX PERIMENT
Eq. B1 predicts thé? dependence of relaxation times for madeThe form of this expression suggests a natural collapse of
the data onto a single dimensionless curve for each mode

0Tn

77mLsd

= gn(R/Lsd) (Cl)
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FIG. 1: Rescaling relaxation times collapses the data to the form predictbe lextended theory, Eq. C1. Error bars are propagated from the
uncertainty in the measured quantitiesando. The experimental data closely matches the theoretical predictions.

—1
whereg, (y) = my [fooo dx%} . Since the experimental data is collected from domains sitbntinuous range
of R, but only a few discrete values, Eq. C1 provides an appealing theoretical predi¢t@ssess the validity of the proposed
theoretical model over the full range of collected expentaédata.

We note that Eqg. C1 contains four distinct physical pararsetet contribute te,,: o, n,,,, ny and R. We assume three of these
quantities to be known from measurements other than theatda time. The viscosity of water,, is well known. The line
tension of the domain is known from the equilibrium fluctoas as described in the main paper and the domain radiusvwakno
from direct observation. The values Bfando do vary from domain to domain and so analysis of the decaystimpecessarily
carried out individually for each domain. After determigithe domain boundary(9,t) as in the paper and extracting the
deviations from circular shape,, (t), we fit the autocorrelation functior{s.,, (t)u_, (0)) to the form(|u,,|?)e~*/ to determine
the relaxation times for each observable mode (n=2,3,&&re, and in all subsequent fits, we use MATLAB’s impleméata
of the Levenberg-Marquardt algorithm for nonlinear lesgttares.) We then fit these four modes simultaneously to EqoB
determine the single best fjt,, for each domain. Since,, represents the best fit to the behavior of the entire domathnat
a single mode, the measured quantitiggerimental will generally differ from ther?redicted obtained by inserting, 7,,, 1y
and R into Eqg. B1; the magnitude and nature of the deviatioogigle an estimate of the fit quality afforded by Eq. B1 to the
experimental data. In Figs. 1 and 2 we present two differesuializations of the quality-of-fit obtained by the thearat model
proposed in the present work (Eq. B1). Fig. 1 plots the meakiglaxation times, rescaled to the dimensionless formgestgd
by Eg. C1. The experimental data is in very good agreemenhttivit theoretical predictions. The deviations between rxgat
and theory that do exist for individual points appear to be-sgstematic, i.e. they are equally apparent over all matheters
and for all domain radii and the scatter falls on both sidetheftheoretical predictions. (It could be argued that tleiti for
moden = 5 does show some systematic deviations from the data, howeer= 5 data is right at the limit of experimental
resolution for many domains and this data may not be fullabé. The analysis discussed in this section was alscecborit
using only modes = 2, 3,4 and no significant changes were observed.)

Alternatively, we can simply plot the ratio between the meed relaxation times and the relaxation times predicteBdyB1

Texperimenta)Tpredictedi Tsxpenmentaclmz(nQ _ /°° Iz J2(x) (C2)
" " B N2 0 z?(z + A) '

If the experimental data carried no uncertainties and Eqs&ted as a perfect description of physical reality, thiangjity
would equal unity for allz and for all domains. The data plotted in this form is given ig.R. Although we see scatter just
as in the representation of Fig. 1, the agreement betweenythad experiment is perhaps more striking here - the datapo
straddle the theoretical predictions and show no systertratids in the deviations that are observed.

By contrast to the above, if we attempt to explain the expenital measurements by fitting to the Stone-McConnell forth wi
a similar procedure, using the bulk solvent viscosity asitidependent fit parameter, we see much worse results. lcdbis
we assume Eq. 7 of the main paper is the correct model for thardics

fluid _ 27TRQ77f n® — 1/4
" o n2?(n?-1)
We use the same procedure outlined above to determing,thérom experiment, and find the best fitting value of thek

viscosity )y for each domain (as previously, the domain radiuand line tensiomr are known from the thermal fluctuations) by
fitting to modest = 2, 3, 4, 5 simultaneously. If Eq. C3 were a good model for the systemyrmchics, the ratio

(C3)

i l
O_Tﬁajpe”menta n? (TL2 B 1) _ emperimental/,rfluid (C4)
2nR2n; n?—1/4 " "
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FIG. 2: No strong systematic error is seen in using Eq. B1 to “predicttnlesl data from the best fit viscosity. As in Fig. 1, error bars are
propagated from the uncertainty in the measured quantitieendo. The dashed red line simply measures the average taken over all the

experimental points in each plot. The proximity of this line to one foratidicates there is very little, if any, systematic error associated with
the predicted expression (Eqg. B1).

should be close to one for all domain radii and all mode nusein fact, what we find is that the = 2 mode relaxation times
are systematically low, while the times fer= 3, n = 4, andn = 5 are systematically long (Fig. 3), with the disagreement
becoming more pronounced agets larger. This systematic deviation is predicted by Eq. B demonstrate this, we generate

35 4 45 55 6 25 5 38 B
R [microns]

& a5
R [microns]

(a)n=2 (b)n=3 (c)n=4 (d)n=5

35 4 45 35 4 a5
R [microns] R [microns]

FIG. 3: Attempting to fit experimental data to the Stone-McConnell thesipgua different bulk viscosity for each domain, causes systematic

problems;n = 2 relaxation times are systematically low compared to the best fitnaad, 4, 5 are increasingly large compared to the best
fit.

relaxation times from Eq. B1 for domains in the ranfge= 2 — 5 microns, with a membrane surface viscosjty = 3 x 1076
s.P., bulk fluid viscosity of); = 1 cP and line tensiom = 0.2 pN. This manufactured “data” was fit to the Stone-McConnell
form using the above procedure (Fig 4). The results are ikirsly agreement with Fig. 3 - the best fit= 2 times are below
theoretical predictions, whereas modes- 3, 4,5 show the opposite behavior. Even the magnitudes of the geetaviations

are close to the experimental plot. The Stone-McConnetirth&ils in a manner completely consistent with the fact tha
experimental data agrees with the predictions of Eq. B1.

fluid
2
fluid

ity
fluid

25

25

3 35 0 3 35 0 3 35 0 3 35 0
R [microns] R [microns] R [microns] R [microns]

(a)n=2 (b)n=3 (c)n=4 (d)n=5

FIG. 4: Attempting to fit relaxation times given by Eq. B1 to the Stone-Mc@#irfarm (usingn s as the fit parameter) generates systematic
deviations similar to those observed experimentally (Fig. 3).

In summary, we have shown that our prediction (Eq. B1) presid globally satisfactory fit to the experimental data. The
theory does a good job reproducing experiment over a rangemfin sizes and all observable mode numbers with a single
fit parameter,,,) used to describe each domain. By contrast, the Stone-Mw€lidheory provides an unsatisfactory fit to the
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experimental results. Furthermore, the errors seen inthétSare predicted by our theoretical analysis and are ftdlysistent
with an experimental system that behaves in accord with Hqg.Athough we have ruled out the Stone-McConnell theory as
an adequate description of the experiments solely on this bathe data, we feel an even stronger case against thislisode
the fact that it requires one to assume bulk solvent visessihat vary from domain to domain with values as higts a$

or three times higher than the known viscosity of water atetkgerimental temperatures (see the next section). It isitden
that individual domains sampled from different vesiclegrave different membrane surface viscosities and linddassince
the lipid stoichiometry is variable from vesicle to vesieled each domain thus represents a distinct physical systemthe
perspective of the bilayer. The bulk solvent surroundirggtiihayer however is constant from domain to domain. It isasgible

to reconcile the experimental data with the Stone-McCdragh (Eqg. C3), either from the physical or statistical gastives.

Supplement D. ADDITIONAL DATA

We present twelve additional data traces, to indicate tladitgLof fits involved (Fig. 5). Each of the plots is similar Fag. 3
of the main paper, which is seen to be in no way extraordinargomparison to the behavior of other domains. In each of
these, the solid blue line indicates the Stone-McConnsliltewith n; = 1 centipoise (cP), and line tension as determined
from the equilibrium measurement. The experimental relaxatimes are almost universally significantly longer thtae
Stone-McConnell prediction. The red line indicates thet fieto our general form, Eq. B1, with the line tension giventhg
equilibrium measurements. The best fit value of the membsarface viscosity, as well as the equilibrium line tensiarg
given in each figure. Plotted in green is the best fit to the &tdoConnell form by adjusting the bulk solvent viscositiyet
required bulk viscosities range from 130% to 300% of the kmealue of 1 cP at 20C. Also, the deviations observed in Fig. 3
can be seen; the Stone-McConnell result does not have thectestope to fit the observed data, though this is more appare
aggregate (as in the preceding section) than in any indiitlace.
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FIG. 5: Data from additional domains.
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